Optimal control of PDEs using physics-informed neural networks
نویسندگان
چکیده
Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of PDE into loss function network-based surrogate model unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, which governing is fully known goal find variable that minimizes desired cost objective. We provide set guidelines obtaining good solution; first selecting an appropriate PINN architecture training parameters based on problem, second choosing best value critical scalar weight in using simple but effective two-step line search strategy. then validate performance comparing it adjoint-based nonlinear control, performs gradient descent discretized while satisfying PDE. This comparison carried out several distributed examples Laplace, Burgers, Kuramoto-Sivashinsky, Navier-Stokes equations. Finally, discuss advantages caveats approaches constrained PDEs.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملOptimal Process Control Using Neural Networks
Infinite time optimal controllers have been designed for a dispersion type tubular reactor model by using the framework of adaptive critic optimal control design. For the reactor control problem, which is governed by two coupled nonlinear partial differential equations, an optimal controller synthesis is presented through two sets of neural networks. One set of neural networks captures the rela...
متن کاملFuel Cell Voltage Control for Load Variations Using Neural Networks
In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...
متن کاملNumerical Optimal Control of Parabolic Pdes Using Dasopt
This paper gives a preliminary description of DASOPT, a software system for the optimal control of processes described by time-dependent partial differential equations (PDEs). DASOPT combines the use of efficient numerical methods for solving differential-algebraic equations (DAEs) with a package for large-scale optimization based on sequential quadratic programming (SQP). DASOPT is intended fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2023
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2022.111731